THE DIRICHLET PROBLEM FOR HARMONIC MAPS FROM THE DISK
INTO THE EUCLIDEAN N..{U) WISCONSIN UNIV-MADISON
MATHEMATICS RESEARCH CENTER V BENCI ET AL. JAN 84
MRC-TSR-2636 DAAG29-80-C-0041 F/G 12/1

BN




=
MN
n

o

EE

-

(N ]

o
==
()

FFFEEEEE

Ei
N
o

I

I
il

A I e |

L2 it s

—
——
rr
r
e

Il

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

2
e

e

r

s
!
|4




MRC Technical Summary Report #2636

THE DIRICHLET PROBLEM
FOR HARMONIC MAPS FROM THE DISK INTO
THE EUCLIDEAN n-SPHERE

V. Benci and J. M. Coron

Mathematics Research Center

University of Wisconsin—Madison

| 610 Walnut Street

o Madison, Wisconsin 53705
| DTIC
| ELECTE.
' MAR2 21884

January 1984

|

i

' 9 41
o (Received October 11, 1983)

i ' N B
\

]

Approved for public release
Distribution unlimited

Sponsored by

‘ U. S. Army Research Office
! v P. O. Box 12211
: ; Research Triangle Park

North Carolina 27709

& &4 : § ,
§ OTC FILE cop 4L 2 0y




- .
A et e L SRR

UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

THE DIRICHLET PROBLEM FOR HARMONIC MAPS
FROM THE DISK INTO THE EUCLIDEAN n-SPHERE

V. Benci. and J. M. COron‘*
Technical Summary Report #2636
January 1984
ABSTRACT
Let 8= {(x,y) e RZ | x2 +y2< 1}, " = {ve &' | |v] = 1} (mw2),

and let Y € Cz'c(aﬂlsn)- We study the following problem

u e cl@s™ n @s™
(*) =Au = uqul2

u=Y on 3R .

Problem (*) is the "Dirichlet™ problem for a harmonic function u which takes
its values in S". We prove that, if Y 1is not constant, then (*) has at

least two distinct solutions.
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Key Words: Dirichlet problem, harmonic map, conformal transformation,
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SIGNIFICANCE AND EXPLANATION

Let &, M be two Riemaﬁpian manifolds (? with boundary). A map
u:Q*M is called harmonic.if it is an extremal of the Dirichlet integral
(*) Jq 17ul? an(a) .

If M =R, (*) is the "classical"™ Dirichlet integral. If = [0,1],

the harmonic maps are the geodesics joining u(0) to u(?). These two

situations have been studied extensively in the past. Only recently have more i
o fad.rs ;

general situations been treated. In z;is paper Gowseudy harmonic maps when

MRS Yok e

-® is the two dimensional disk and M =% In this situation, given a smooth

SR S rar A

function ¥ from 3R to & we prove that if ¥ is not constant, there

IR RS

exist two harmonic functions u such that ulys = 7., R
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THE DIRICHLET PROBLEM FOR HARMONIC MAPS
FROM THE DISK INTO THE EUCLIDEAN n~SPHERE
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* *¥
f V. Benci and J. M. Coron

Introduction

Let

2 ¢ 1}

Q= {(x,y) e R | X%+ y
é and
S=fver™ V| |vl=1 n>2 .

Let Y be a map from 3R into S". We seek functions u in
i Cz(ﬂtsn) n Co(ﬁ}sn) such that:

(1.1) - du = ulvul|?

(1.2) u=Y on 3N .
; We shall assume that

(1.3) Y e 02'6(39) with 0 <§ < 1

which means that Y € Cz(aﬂ) and that the second derivative of Y 1is H8lder

continuous with exponent §&.

. The existence of at least one solution is obvious. To see this let

{ E={uesn (@ | u|aQ =y, lul = 1 a.e.}
l where H’(931P+1) is the usual Sobolev space. Using (1.3) it is easy to see
that [ is non void. On € we consider the functional
2
. E(w) = [olvul® .
Clearly there exists some u in E such that
_j ! {(1.4) E(u) = Inf E=m .
B E
; E u is a solution of (1) and (2) and thanks to a result of Morrey [M2]
|k :
Universitd di Bari - Bari, Italy.
*e
. Ecole Polytechnique, Centre de Mathematiques, 91128 Palaiseau, France.
‘Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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Our main result is:

Theorem 1

If Y is not constant then there exist at least two functions in

2,8

co(ﬁrsn) nc¢ (Rs™) which are solutions of (1.1) - (1.2).

Remarks

1) If ue Co(ﬁtsn) n H‘(ﬂlln*1) satisfies (1.1), u is harmonic; moreover
it is well known (see (LU2], [HW], [Wi]) that u € C (R:S") ana if

e Ck'alaﬂlsn). ue Ck'a(ﬁisn)- In pasticular, in our case, if

ulaq
uecl@s®) nu',2%") is a solution of (1.1) - (1.2) then

uw e c28@s™.
2) In the case n = 2 theorem 1 has been proved before by H. Brezis - J. M.
Coron [BC2) and J. J8st (J) independently.

In this case, it is possible to assume less regularity on y; for
example F # ¢ is sufficient to guarantee at least two solutions in
H'(2:5®); we do not know if this is the case for n > 3. The difference
between n =2 and n > 3 4is that [ is not connected when n = 2 and
connected when n » 3. (To see that [ is connected when n > 3, use the
density result due to R. Schoen - K. Uhlenbeck [SU2].)

3) when Y is constant it has been proved by L. Lemaire ([LM] that, if

0 =
uec (9;s") n H1(9:ln+1) is a solution of (1.1) - (1.2), then u is

identically equal to the same constant.

In order to prove theorem 1 we introduce

(1.5)!p ={cg|oe co(S“-ziw;'p(ﬂisn)), ¢ is not homotopic to a constant}

where p > 2,

W;'p(ﬂrsn) ={u|lue w1'p(918“), u=vy on 3}




and Co(Sn-1tW;’p(ﬂlsn)) is the set of continuous functions from §"2 {nto

w;'P(n;s“). Let

(1.6) L=V I
p>2 P
and
(1.7) ¢ = Inf Max E(o(s)) .
cel sesn-2

The main result of the paper is the following theorem:

Theorem 1.2. Suppose that Y € Cz’s(aﬂtsn)(n>2) is not constant. Then the
problem (1.1), (1.2) has at least one solution u € Cz'a(ﬁtsn) such that

E(u) = ¢; moreover if ¢ = m, the problem (1.1), (1.2) has infinitely many
solutions when n » 3; two solutions when n = 2,

Clearly theorem 1.1 follows from theorem 1.2.

The main difficulty in proving theorem 1.2 comes from a lack of
compactness. For this reason we are not able to prove directly that ¢,
defined by (1.7) is a critical value of E (i.e. that there exists u
solution of (1.1), (1.2) such that E(u) = c). For this reason, following an
idea of J. Sacks and K. Uhlenbeck [SU1] we study an approximate problem, i.e.
the critical points of the functional

1,2a

2.a
(1.8) Eg(w = fol(1 + [Tul5® - 1lax, wew “% a>1 .

This functional satisfies the Palais~Smale condition. Let

(1.9) c_ = inf Max Ea(°(9)) .

a
OGIZQ ’esn 2

We prove that Cq is a critical value of E, larger than c¢ and that

limc_=c .
a+1
a>1

Just to explain the difficulty let us assume for the moment being that ¢ > m.

There exists uy such that

l&(ua) =0

-3-




and

E(ua) =Cq o

(1
Obviously u is bounded in H1

a and therefore we can extract a subsequence

Uy which converges weakly in B! o some u; u satisfies (1.1) ~ (1.2) (see
n

[su1]) and the key point is to prove that u # u. In fact we shall prove that

U, tends strongly te u and then E(u) = ¢ > E(u). The proof of the strong
n

convergence relies on some ideas used in [BC2]. We prove the crucial strict
inequality
c<m+ 8n ;

then, using a theorem of E. Calabi [C] and arguments involved in J. Sacks - K.

Uhlenbeck (SU1] we prove the strong convergence.

Remark
Similar difficulties and methods also occur in [Aa), [BC1), [BN], [J],

[LB], [LN], [sT], [T] and ([w2].

(n 1 1 1
instead of H'(Q;RMHT),

For simplicity we write H




2. A topological result

In this section we shall prove a topological result which will be used in
the proof of theorem 1.2.
let 2= {xer | |x] < 1} and let M be a c2-manifold sitting in R,

Suppos2 that Y € C,(Sﬂlﬂ) is homotopic to a constant. We set

H;(Q;H) = {ue H‘(Q;IF) | ulaﬂ =y and u(x) €M for a.e. x € 0}

1,= 1 —
CY(Q)H) = {u e c (M) | ulaQ =v} .

For w € H;(Qtﬂ) we set

AG(") = {u € H'(Q:M) | tu-wt 1 € § and u=w on 90} .

H
Theorem 2.1. For every w & H;(QxM) there exist §, €0 > 0 and a continuous
map
1
such that

(i) Tgu = u for every u € Ag(w)

(11) Te u e c1(§}n) for every u € As(w)
0 Y

(111) Te : 33(") +> C‘(ﬁ}n) is continuous
0 Y

(iv) T : [0,80] x [W;'p(ﬂ,n) n 33(")] +> w;’p(91M) is continuous for every

p>2.

First we shall prove theorem 2.1 in the case in which Yy is identically

equal to a constant c.

lemma 2.2. If Y c (¢ 1is a constant) then the conclusion of theorem 2.1

holds.
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Proof. We extend every map u € Hl(ﬂtn) to ®2 taking u(x) £ ¢ for

x e R?-ﬂ. We shall denote u and jits extension by the same letter.

Let ¢ecT(®,(0,4=)) with [ , ¢ ~1 and

R
(2.1) #(x) =0 if x¢Qa .
We set
4 00 = e 2pcdxl
and )
(2.2) ug(x) = (Jud(x) = [ g (x-ylu(yldy . ;

We have the following inequality which is due to R. Schoen and K.
Uhlenbeck [SU2): there exists c¢3 > 0 such that V § > 0 Seo > 0 such that

dist(uc(x),n) < c36 for every u € As(w)

(2.3) 2
for every x € R, for every € € [0,801 .

1
For the convenience of the reader we recall the proof. 1In fact, since ;ﬁ
u{ly) €M for a.e. y € R we have
dist(ug(x),M) € lu (x) = uiy)l .

By the above formula, for x € Rz we get

2
Te” dist fu (x),M) < le-yl«:'“e(x) u(y)lay <

2 2 EQ
<c.e [I'x_y'<e|7u(y)| dy] (by the Poincaré inequality)

(2.4)
2 - 2 2, VW
< c,€ (]Ix-yl<£|7u(y) Vwiy)l“ay + ]'x_y|<e|7w(y)l dy)
2 2 2_ Vv
< c.¢e (lu-vl + f _ {Vw(y) | dy) 2
1 H1(9) | x-y|<e
-6
:::, Yo \}“
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Since IVwI2 e L1(l2). we can choose € so small that

I,x_y|<e|VW(Y)|2dY < 62 for every x € R .

So by (2.4) and the above inequalities we get

(2.5) dist(ue(x),M) < c35 for every u @ AG(W)’ for x € R2

and € sufficiently small where c¢3 is a suitable constant which depends ‘}

only on the Poincaré constant c,.
Now let d be a constant such that the projection map
P : Nd(M) + M
is well defined. Here Nd(M) = {x e Rk | dist(x,M) < 8}.

Now fix § < 3%— and €, small enough in order that (2.3) holds for

3
every € € (O,GOJ (and every x € Rk, every u € As(w). Thus the map
1,22
PoJd, : AG(W) + C (R",M) € e (0,€01

is well defined and continuous.

Now consider the map

1 1 -
R, : C (R2,M) + C (Q,M)

defined by
_ X
(Reu)(x) = “(T:E) .

Clearly Re is continuous in u and €. Moreover, if u @ P o Je(AG(W))
(e € eo) it is easy to see that (Reu)lan = c. Therefore the map
T i [0,60] X Ag(w) * H_(R34)

T, = Id

Te = Re oPo Je

gatisfies the requirements (i), (ii) and (iii).

Moreover one can easily check that T is continuous and moreover satisfy

(iv).
W]
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Now we shall consider the case in which Yy is not constant. Since we
have assumed that Y is homotopic to a constant, there exists a
0
homotopy h € C (I x 32;M) such that

Y{x) ¥V x € 3Q

(a) ho(x)

(2.6)
¥V x €930 (c is a constant) .

"
[¢]

(b) hy(x)

Since we have assumed Y to be of class C1, we can suppose that also h

of class C1.

Lemma 2.3. Under our assumptions there exist two continuous functions

1 1
H:1Hx HY(Q,M) + H (Q;M) with HA(u)|aQ = h, ()
and

X : {0, eI xu@m | ul. = h (1)) H;(Q;M)

an
such that

s . . 1
Ho = KO = identity in HY(Q,M) .

Moreover H and K are continuous also in the W1’p(Q;M) topology.

1
Proof, For u € HY(Q;M) set

- u(x) for |x| < 1
u{x) = x
h'x|_1(T;Tﬁ for 1< le <2 .
By virtue of (2.6)(a) ue H;(Q1;M) where 91 = {x € ' I Ix| < 2} and of

course it depends continuously on u € H;(Q;M).

For v € H; (Y)(Q;M) we set
A

vix) for ’xf < 1

x
h 1< < .
X(2-|x|)(T;T) for Ix] 2

Clearly ve H’(Q;M).
Finally for x € Q set

(H

w)(x) = u((14\)x) u e H;(Q;M)

A

is




e s q-v—ﬂ

~ 1
= + .
(KAV)(X) VA((1 A)x) v e HhX(Y)(QrM)
It is easy to check that HX and Kx satisfy the required conditions. .
Proof of theorem 2.1. Let H be the map defined in lemma 2.3. Then
1
H1(w) e Hc(ﬂtu).
By lemma 2.2, there exists 3, Eo > 0 and a continuous map
T2 (0,81 x A_(H,(w)) + H(@r4)

! §

which satisfies (i), (ii), (iii) and (iv) of theorem 2.1.

Since H, : H;(QiM) * H;(QvM) is continuous, there exists § > 0 such

: that
3
1
; H1(A5(w)) c AE‘H1(W)) .
g Therefore it makes sense to define a map T : [0,1+eol x As(w) + H;(Q,M) as

follows

KA o HA(U) for A e [0,1]
Tx(u) ~ ~
K1 o TA-! o H1(u) for A e [1,1+eol .

Such a map satisfies (1), (ii), (iii) and (iv) of Theorem 2.1 with
1 €, = 14€_.
| 0 0 o

1—
Lemma 2.3. Let z € CY(ﬂrM) and set

N (z) = {ue C’(E;M) | 1z=ul <n} .
n Y !

! Then if n is sufficiently small, Nn(z) is a strong deformation retract of

l {z)} for every z € C;(E:M).

ocof. Choose n small enough in order that Bn(y) n M is geodesically

————

‘ convex in M for every y € My (B (y) = {x e R | |s-yl < r}). Then for

x e Bn(y) we define




ht(y.x) = g(t) where B(t) is the (waique) gsodesic ea M
parametriszed with the arc length such that
B(0) =y and B(1) = x .

So if M is a smooth manifold h is smeseth,

For u € l‘(z) we set
st(u)(x) = ht(:(x).u(x)) . !
Clearly S : I x ln(z) + C;(E:l) is comtinseus, 8y ¥ Id.“(')i 8y(u) =z for

every u € N_(z) and S.(s) =z for every t @ [o,1).
" o

By theorem 2.7 and lemma 2.3 the fellewing Cerollary follows which will

be used in the proof of our main theorem.

1
Corollary 2.3. For every W @ HY(ﬂzl) there is ¢ > & such that

1
Ae(w) n W"p(ﬂtl) is contractible to a peimk in W ‘PN, p? 2.

Proof. By theerem 2.1 there exists a contimswews map T  : AG(') + C;(ﬁtu)-

0
So given N as in lemma 2.3, there exists ¢ @ (0,6] such that ,

Teo(Ae(w)) c N“(Teo(w)) .
By lemma 2.3, Nn('re (w)) is contraetible, then also A.(w) 0 w"P(n;u)
4]

is contractible to a point in H"’(ﬂ:l).
° |
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3. A Convergence Theorem

In order to approximate the solutions of problem (1.1), (1.2) with the

critical points of the functional (1.8) we need the following theorem which

has been ingpired by J. Sacks and K. Uhlenbeck [SU1].

Theorem 3.1. For every a > 1 let u € Eu be a solution of

(3.1) E&(ua) =0

and suppose that

1lim E(“a) <m+ 8n .

(3.2)
at

1 =
+u in C (Q:Sn) and u is a solution of

Then u has a subsequence u
a o

(1.1).
In order to prove theorem 3.1 we need the following proposition due to J.

Sacks and K. Uhlenbeck [SU1)}.

Propositicn 3.1

There exist ag > 1 such that if u € Ea with 1 < a < a, and

E;(u) =0 then u € Cz's(a).

In fact in [SU1] only the

Proof. See the proof of proposition 2.3 in ({sUt].

regularity inside @ is proved. But the theorem 1.11. 1' of Morrey (M2]

which is used in [SU1) is still valid in all Q if =z is assumed to be in

1
Hy (see p. 38 in (M2]). Therefore we may apply this theorem to z =u - ¢
where ¢ € C2,6(§) with ¢ =Yy on 98. We conclude that Vu € H1. The end
of the proof is an easy adaptation of the proof in [SU1].
0

Proof of theorem 3.1.

In the following we will always assume that 1 < a < age Since uy, is

bounded in 1" and E(uu) is bounded, uy is bounded in H‘. Therefore

there exist a sequence (a ] such that u tends weakly in ! to
k’kEN %

Using (3.1)

some u. For simplicity we shall write u, instead of uuk.

-11-




(and Proposition {3.1)) we have

 a— - —s— .
1

ot 2 2
(3.3) -Auk -2 4—-———~7T-(Vu ' Vuk, v uk) = uk)Vukl
(1+|Vukl )
where
32uP  3uP 3l
(Tay To T) = ) s et
} by %%y 9%y 0¥y 9
1< 32
1K p<n+?
1<q§n+1
+1
1 +1 n
and “k= (\lko-'°tu;§r"'l“: ) =q§1 u.zeq.

Let
ek = Mai quk(x)\ .
xef

First let us assume that ek is bounded.
We are going to prove that in this case Uy tends to u in C’(ﬁ) and

i that:
' - Au = u\Vn\z .
'
Using (3.3) we have:
j % pd az“g P 2
\ -~ af + (a -1) ) P2 == |V 1< p< ntt
(3.4) % gy | 1I% ¥x ¥ B K
! 16 §€2
) 1Kg<nt+1
: with
L 4 (3.5) ypaPdy _ <cC .
I i 0@
g
eon Since ek is bounded we have:
2
(3.6) b vt <c -
TR 0 g,

1t follows from (3.4), (3.5), (3.6) and a theorem of Morrey [M1] (see

i WL PR

also [N1) that:

-12-
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(3.7) 3Y > 0 such that iyl _ €C .
RSO

(Actually in (M1] and (N] the theorems are stated for one equation and not for
a system. But, the proofs can be easily adapted to the system (3.4).) It
follows from (3.7) that u, tends to u in c‘(ﬁ). Moreover (3.3) may be

written in the following divergence form:

9 -1
- = [(1\~|vuk|2)mk 5;5) - w19 24190 12) % L a2
i

Using the convergence of u, to u in C‘(ﬁ) we have
(3.8) -tu = u|Vul? .
Now we want to show that

(3.9) lim Ok = 40
ke 4o

is not possible. We argue indirectly and suppose that (3.9) holds. Let
a, e 5 such that
Ok = IVuk(ak)l .

After extracting a subsequence we may assume that either

(3.10) iim Ok auk,am = 4w
K+ 4o
or
(3.11) lim Ok a(ak.an) =0 < 4w
k>

where a(ak,an) is the distance from a to 234.
First let us assume that (3.10) holds. Then, like in [SU1] we define
x
vk(x) ~ uk(ﬁ; + ak) .
vy is defined on 5% where
= Y .
9 | vy eq}
Using (3.10) it is easy to see

(3.12) ¥V R>0 Zk(R) such that k > k(R) ==> B(0O,R) < Qk




SRR T

g
|

where B(O,R) = {x € R? | Ix] € R} . Moreover it follows from (3.3) that, in

Q

kl
% - 2 2
(3.13) - Avk - 2 U S (Vvk.Vvk,V vk) = kaVka .
(6, “+1%v. | 7)
k k
We have
(3.14) 19v 1 <1 .
@)

As before it follows from (3.12), (3.13), (3.14) and [M1) (or [N]) that there
exists Y > 0 such that ¥ R> 0 C(R) such that

(3.15) v, | CC(R) Vk .
k1Y (8(0,R))

Therefore (after extracting a subsequence) we have

(3.16) v, *v in c'(B(o,R)) ¥ R
and in particular

(3.17) |9v(0)]| = 1im IVvk(O)I =1 .,
ko>t

We write (3.13) in a divergence form:
-1 dv -1
? 2 2,% x 2 2,%
(3.18) = (c1+0, (99, 17) §§I) = v 1%, 1°( 148, |v, %) i=1,2 .
From (3.16) and (3.18) we get
(3.19) ' - av = vlww]? .
Moreover

fnk|wk|2 =gt 12 cc
thus

(3.20) [ 9912 < 4= .
R

From (3.19), (3.20) and [sU1] (theorem 3.6) it follows that v can be
extended to a regular harmonic map from R u (=} = 8% into s".

The following theorem is due to E. Calabi [C] (theorem 5.5):

-fid=-




Theorem
Let v be a harmonic map from s2 into S™ whose image does not lie in
any equatorial hyperplane of Sm then
i) the area A(v) of v(sz) is an integer multiple of 2w

ii) m is even, and A(v) ? EﬁE%Zl " .

Remark
In {C] v is assumed to be an immersion but the proof given in (C] works
also if v is not an immersion (note that the points where v is not an

immersion are isolated and branch points, see e.g. {GOR]).

Any harmonic map w from s2 into S2 which is not constant satisfy
(see, for example (L] theorem (8.4))
E(w) » 8n
Therefore if w 1is a harmonic map from s? into 8™ which is not constant,
using the Calabi theorem and an easy induction argument we have
Elw) » 8% .
(we recall that E(w) > 2 A(w)).
Our map v is a harmonic map from s2 into S" and (see (3.17)) v is
not constant. Therefore
(3.21) E(v) > 8x .
We are going to prove (as in (SU1)) that

(3.22) lim E(w, ) > E(u) + E(v) .
k++o

Since by definition of m (see (1.4))

(3.23) E(u) > m ,

using (3.21), (3.22), (3.23) and (3,2) we get a contradiction.




g
E .h....-_.,..._.«.—.—a-ﬂ

We may assume that a, tends to some a in 5. let € > 0 and
r > 0 such that
(3.24) JD(a,r)lvul2 <e

where

D(a,r) = {xe Q| |x~al < r} .
We have
’ 2 2
, (3.25) jD(a,r)Wukl }Cklkal
where
c, = {Gvé (y=a,) | vy € D(a,x)} .
k k A ’
Using (3.10) we have
$ R> 0 3k(R) such that k » k(R) ==> B(O0,R) < Ck .
Therefore

(3.26) lim leklz > E(v) .
krdo Ok

e

From (3.24), (3.25) and (3.26) we have

lim E(u) > E(u) + E(v) - ¢ (¥ e > 0)
| k4o

which proves (3.22).
Now it remains to exclude (3.11). We assume (3.11) holds. Now (3.12) is

false.

i We may assume that a, tends to some a. Using (3.5) and (3.9) we see

e

that a € 390; with no lack of generality we may assume that

lim 8 = (-1,0) = a .

k4o
y 4
1 ' Let T : R® - {(1,0)} + R?
) 1 x1-1 Xy _ _
(3.27) T(x,,%,) = (= e B A I 5) = (x,0x)) .

3 X X2 ™ X2 )

1 _ T is a conformal diffeomorphism between & - {(1,0)} and ] %, +» (x R and
‘
-16~-




AN - {(1,0)}) = {gé x R

-1 - -
(3'28) T ((x1lx2)) - (1 - ;2 _2 ’ _2 _2) .
let U =] %v +=[x R and let

Clearly

- 1 —

u ec (v ,
and a straightforward computation yields

-l - -
Auk(x) = |x]| Auk(x)
199, 1260 = T3] 4195, 160

where ; = TX.

In particular:

(3.29) Wul , _ <48
k CO(U) k
and
- - Ok
(3.30) IVuk(ak)l -— " 49k as k+ o ,
la, |

where :% = Tay.

Using (3.3) we get (1 € p < n):

%54
o 4 ) qu k
- A + (a, -1) : . =
(3.31) " 1% wicg A3k Fx xS
1< <2
1<g<nt+1
P 12 . ! aE:
v, |” + (a -1 ) -_—
e 1% X wicy ik ax,

1K g<n+1




Pq 0 - Pd 0 —
ijk e c (u), cik e c (v)
and
1
!
(3.32) 1599 ) < c, 1cPh <c .
ik 0 — k 0 —
’* T 0@
We have
v, =Y on 3 with
2
-1 4t -1 4t
4 Yizet) =v(—=— ., ——) -
, 4t +1 4t +1
if ;% = (;;,;;) and ay = (xk,yk), using (3.28) we get:
- - .1_ = 1-xk - l
i L k-1 42 2
_ 1-(xk+yk)
2 2 *
2[(xk 17 + yk]
Then, by (3.11), we have:
- P o(1)
{(3.33) xk E - + ) (k + +) ;
k k ;
Let
~ o~ A -1 1 ~ 1 pr
. GG =g g G gl gty
k k
1 ’ We have Gk = ?k on 38 with
~ 1 -1t
i Yi(z®) = Yigg- * ¥y
{ k
3 and thus
j
~ - 1 2,8
(3.34) Yy * Y(E'O) in ¢ (3u) .

Using (3.29) we have

(3.35) |v“uk| <4 .
@)

Using (3.31) and (3.32) we have (for 1< p < n):

-18-
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2~q
3
-~ AW + (a -1) T B k.
“k Ok ijk f

1€ic2 3x, x4 ,
1€ 3€2 ’
1<q&n+1
(3.36)
~pig™~ (2 1 z qu 33&
wiVa |© + =— (a ~1) —
k k Ok k 1€1€2 ik axi
1<g<n+1
with
~pq ~pq
(3.37) 'Bijk' 0 — <C, 'cik' 0 — <€C .
c (mn c (v)

Let R>0 and Up=Un{xe ® | Ix] < R}, Using (3.34), (3.35), (3.36), !

(3.37) and the Morrey-Nirenberg estimate [M1], [N] we get:

(3.38) ga >0 HEC(R) such that 15l , _ <€C(R), ¥k .
’
c " (Up)
Remark
Actually in [M1] there is not estimate up to che boundary but this

estimate can be deduced from the interior estimate, see [GT] (p. 248-249).
One can find estimate up to the boundary in (LU1] (p. 455-456) and [N]. 1In

all these references the theorems are stated for only one equation but the

proofs can be easily adapted to our system (3.36).

~ 1
Therefore we may assume that for some u in C ' U):

(3.39) m 1a -ud . _ =0 .
i S )

Moreover, using (3.36), (3.37), (3.35) it is easy to see that if w is a

bounded regular open set of U such that w < U then

ut < Clw) .
w202 )

-19-




Therefore, using (3.36) we have:
(3.40) - A% = 319812 in U .
With (3.34) we get
(3.41) = ¥(z0 on 3 .
Moreover

JalVa 1® = fyiva 12 = [1va,1%
therefore:

(3.42) fu|v3|2 <o

We recall that u € @ (and even € c"“(fi)). Then using (3.40), (3.41),
(3.42) and a very slight modification of a theorem of L. Lemaire (see the
appendix) we have

(3.43) TEYG0 .

But, using (3.30):

~ ~— 1 1 -
(3.44) lim |Vu (8 (x =~ ) + 3,0)] = V2
K4 k 'k 'k 2 2

and using (3.33):

) + !

L
*a

[N N
(M)

- 1
(3.45) lim ek(xk -3

k4o

and then using (3.39), (3.43), (3.44), (3.45) we get a contradiction.




4. Proof of Theorem 1.2

The proof of theorem 1.2 lies on several lemmas.
Lemma 4.1. Let m and c be the constants defined by (1.4) and (1.7)
regpectively. Then

c<m+8x .

Proof. We shall construct a map o © L5 such that
(4.1) E(ae(s)) <m+ 8y .
Then the conclusion follows by the definition of c. The construction of such
a map is an adaptation of the proof of lemma 2 in (BC2].

Let u e E such that E(u) = m. Thanks to Morrey's regularity result

ue c.(n,n9+1) n cz"(ﬁ,a“*‘). Since Y 18 not constant u is not constant
and therefore Vg(xo,yo) # 0 for some (x5,yq) 1in Q; rotating coordinates
in I? we may always assume that

g“(xo.yo) . Ey‘“O'Yo) =0 .

Let (e,) ci¢n+1 P® 20 orthonormal basis in f*1  guch that:

gx(xo,yo) = ae,
gy(xo,yo) = be,
g(xo,yo) = e,
with a >0, b> 0, atb > 0,
We shall identify g2 to sPn{ves") vee, = 0, vee, = 0}. Let

r and © be such that x - xg =r cos 6, y -~ yg = I sin 6. Let € > 0 be

2vax(a.,b) > O.

small enough. Let ) = % €
0,.n-2 1,3 n
We define a map O ec (s H WY (1:87)) in the following way (where
s e 572,

it 2¢ < r, o (8)(x,y) = uix,y)

2) 2\ r
it <cr<e, oc(s)(x,y) -3 (x-xo)e1 t =53 (y-yo)e2 t 53 %
A\ +r A +x

-21-




2.2
2\ -
if ¥r <A, ae(s)(x,y) =3 (x-xo)e1 + ik 3 (y-yo)e2 + r2 Xz s
AT+r AT 4r A +r
n+1 n+1 2 1/
if € <r <2, 0 (8)(x,y) = ) (A,r+B e, + (1 - ) (a,r+B,)°)"2e
€ i i"71 i i 3
i=1 i=1
1#3

where A; and B; depend only on ® and € and are such that o.(8) 1is
continuous at r =€ and r = 2¢ for each 8. More precisely

2¢ Ai + Bi = Bé(xo + 2 cos 6, yo + 2 8in 8), 1< 1 < n+1

s~

eA1+B1=—-§—)‘55cose
AT +e
I, : € A2 + 52 = ixe sin ©
] A5+
}
i €A +B =0 , 3<¢ic<n1
Since u € w"3(n;s“), °e e CO(S“-Z,w;'3(Q;Sn)). Moreover
E(0_(s)) = E(0_(e,)) for every s € "2, ?

and a straightforward computation leads to

E(o_(e,)) = E(w) + 87 - ve? + o(e?), (e + 0) ,

where Vv > 0 (see [BC2]).
f Therefore we can fix € small enough in order that

' E(o(s)) < E(u) + 8n

", where 0o = Oc .

It remains to prove that o € Za(1 <ac< %J i.e. that o is an

essential map. We argue indirectly. Suppose that o© is not essential. Then

there exists a continucus map o

TiIxsv2a w;'2°<n.s“> (1 = 10,1))

- ——

such that

a(0,%) =0a(e) ;

T REUN A

;(115) = u

R T o b

for every s @ sP2 shere u € w;'za(ﬂ,sn).

-22-
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Now we define n : I x Q x Sn + S as follows:

ﬂ(t,x,y,s) = E(trs)(x'y) .
Clearly n is continuous in all its variables and we have:
(a) n(0,x,y,s) = o(s)(x,y)

{4.2) (b} n{1,x,y,8) = ulx,y)

n~2

(c) nit,x,y,8) = yY(x,y) V(x,y) e, veeIl vses .
Q Next step will be to extend n to a map
¢ : Ixa@xs™")ss”

as follows

ni(t,x,y,s8) if (x,y) e and s € an“" = s“'2

— e —— e

L(t,x,y,8) =
Yix,y) if (x,y) e 3 and s € Bn-1 .

1) is

By (4.2)(c) it follows that [ is continuous. Since 3(Q x B
topologically equivalent to s™  the topological degree of [(t,*) is well

y ' defined for every t € I. We shall compute it for t =0 and t = 1, To
this end we extend {§(t,*} to a map

8(t,*) : & x 8™ » gM!

since

(4.3) deg(zT(t,*)) ~ deg(8(t,*), & x B* ',u)

for every w € int(B"*1)., For t =1 we set

8(1,x,y,2) = ulx,y) .

Amir ettt

i Then by (4.3) it follows that
(4.4) deg(z(1,*)) = 0

since 0(1,x,y,z) is independent of z. For t = 0 we set

JRRSURUREES S
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1f x>, 8, € $%2 fixed

n(O.x.y,so) = a(so)(x,y)

6(0,x,y,2) = 2 .2
2) (x=x_)e. + 2\ e + % -
X2+r2 0" 1 X2+r2 2 X2+r2

z if r <)

1
[(x*xo)z + (}(-}(0)21/2 and we shall compute

where r =
}
: n-1
deqg(8(0,*),2 x B W) with w = X5€, + Yoo, -
1
First notice that |wl = [1xg)2 + Jy512)2¢ 1, so the degree is well defined

and it is equal to the algebraic sum of the nondegenerate solutions of the

equation
| - -
(x,y,z) € Q x B"

!
(4.5)

1

e(ollelz) =w .

{x,y)] » X the solutions of

gince ({wl < 1 and [8(0,x,y,2)} = 1 for

(4.5) are the same that the solutions of the following equation

,
(x,y,2) & Q x B“m1

S [(x,y)| < A
§ (4.6) <

i 2\ - - r _
2 > [(x xo)e1 + (y yo)ezl + 53 2
AT+

!
By inspection we see that the only solution of (4.6) is8 x =y =z = 0, and

that it is not degenerate. Therefore dey(f{(0,*)) = %t t' and this contradicts

(4.4). D




where £2a is defined by (1.5).
Lemma 4.2, For every a > 1, the ca's defined by (4.7) are critical values
of E . Moreover ¢_+ c for a+ 1 and c_ 2 c,.
a o a
Proof. It is straightforward to check that Ea satisfies the agsumption (c)

E of Palais-Smale on Ea' Then by well known facts about the critical point

theory the cu's are critical values of Ea'

! Now we shall prove the second statement. Since Ea(u) > E(u) for every

ue EQ, we have that

i cg > inf sup E o ols)
. oezzc sesn-z

> inf sup E o d(s) = ¢ (since tza < I .

oel aesn-Z

Thus €y > ¢ for every a > 1,

Now let us prove that c  + c. Chooge € > 0. Then there exists p > 2

and ; e tp such that ‘ﬂ
; ; (4.8) c+¢€ > sup E(u) .
¥ ! ue;(sn-z)

For u € ;(sn-Z) c Ea with @ < p/2 we have

- 4 - 2,a 2
& Egw In (1 + 17ul*)% log(1 + [uj“)ax .

In particular, if we fix a, < p/2 we have that the function i

(a,s) » %E Ea(s(s)) is bounded by a constant M in [1,001 X sn-2. Thus,

J = ah~2

‘ for u € o(s" ) we have
{

i

E (u) € E(u) + (a-1)l%; E ()] € E(u) + (a=1m .

We now choose a such that Ea(u) € E(u) +e€ Vue o(Sn-2) Vac ;. Then by

(4.8), Vac<a




T —— e

c +€> sup (EOl o dls) - g) = sup E .0 ;(s) -g
n-2 n=-2 o
8és s€s
> inf sup E, 0 dg(s) ~ e =¢c_=-¢€¢, i.ec c_< c+ 2 Vac< a .
oel — n-2 a a
2a 8€S
O
Finally we can prove the theorem 1.2.
Proof of theorem 1.2. We consider two cases: ¢ >m and ¢ = m.
I cage ¢ >m. For a > 1, 1let u, be a solution of E&(“u) = 0 which
exists by lemma 4.7. Also by lemma 4.2 and 4.1, it follows that
lim Ea(u ) =1lime¢_ =c <m + 8n
a*1 a+1
a>1 a>1
and since m € E(uu) < Ea(uu) we have that
lim E(u_ ) = ¢ <m + 8r .
a
ar1
a>1
Then the conclusion follows from theorem 3.1.
(]
II case ¢ = m., Choose € > 0, then there exists O € I such that
(4.9) max Eoo(s) <m+¢e .
ses" 2
Let ue be such that E(ge) = m.m2 E o o(s).
ses“
We consider a subsequence u. (ek + 0) (which for simplicity will be
k
which converges weakly to some u. Since 1lim E(gk) = m, and

denoted u,)
K4+

since E 1ig weakly lower semicontinuous it follows that

lim E{u, ) = E(u) .
k++o

The above equality and the weak convergence W * u imply that w *u

strongly in H‘. By Corollary 2.3 we can choose 60 > 0 such that AG 'Y(g)
0

is contractible in

w!lr2%(q,m).
Y




We claim that for every § < 60 and €y small enough there is

S eq (s"? such that
13 ek
(4.10) l\_xk-uil 1-5 N
H
In fact, if the above equality does not hold, then
o (s ca, _(a)

and this is absurd since 0. is an essential map. Therefore, by (4.3) with
k

€ = ¢ we get

kl
' lim !(ui
k++

) = m

and since E is weakly lower semicontinuous we get that

$

- 8
k) E(u”)

(4.11) lim E(u
ko 4o

where u6 is the weak limit of u: (may be after having taken a

subsequence). By the weak convergence of u: and (4.11), it follows that
f ug + u6 strongly in ', so taking the limit in (4.10) we get
{ : w -1 =5 .

Thus, for any 6§ € [0,60) we get at least one solution 2§ of our problem.

a
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APPENDIX

Let W = (0,+) x R and u & c’(@s5") such that

(A.1) vu e 12(w)

(A.2) -Au = u|u)?

(A.3) 2P es® such that u =P on o '
then

(A.4) ufP in w .

Remarks

1. when ® is a bounded contractible open set of B (A.4) is also true;
this theorem is due to L. Lemaire [LM] (Theoreme (3.2)). However, we cannot
obtain (A.4) from the result of L. Lemaire and a conformal change of the
variable. In fact consider a diffeomorphism I between w and §§ (the open

unit disk of R?) such that (for example)

I(3w) = 30 - {(0,1)} .

v = u . I-1 L]

Clearly we have:

vecd@ - {(0,1}; s
Jql¥v1? < 4=
- Av = levl2
v=P on 30 .

But we cannot apply directly the theorem of Lemaire since we do not know if

veckd s.




— ot s

- ——b

2. Thanks to a claasical theorem (see, for example [HH], (LU2] pp. 485-493)

using (A.1), (A.2), (A.3) and v € c°(3)s“) we know that u is analytic in

Q.

3. Our proof of (A.4) is inspired from H. Wente (W1].

Proof of (A.4)

We may assume that P = €4 let w be the following function from

l? into s":
if x>0 wi(x,y) = u(x,y)
if x < 0 up(x.y) = -up(-x,y) for 1< p<n

and
+
v,y = o™ exy)
Since |u[2 = 1 and u(0,y) =P Vy€R we have:
(A.5) g—x wvtlo,y) =0 vyer .

Then, using (A.2), (A.3) and (A.5), it is easy to see that

(A.6) ~ Aw = w|Vw|? (in the distribution sense) .

Moreover w € Co(l?) n H;OC(I?)- Thus (see (LU2], (Wil or [HW]) w is

analytic.
o0
let d€C (l?,C) be defined by:
¢ = wz - w2 -2 wew .
x Y x 'y
Using (A.6) and |w| = 1 it is easy to see that ¢ is holomorphic.
Moreover, by (A.1), we have ¢ € L1(l?) and, therefore ¢ = 0. Hence

Yw=0 on {0} xR ,

which implies

- 2
wzP in R .
i
-20-
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